If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+3x-22=0
a = 9; b = 3; c = -22;
Δ = b2-4ac
Δ = 32-4·9·(-22)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{89}}{2*9}=\frac{-3-3\sqrt{89}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{89}}{2*9}=\frac{-3+3\sqrt{89}}{18} $
| (C^2D^5x)/(E^4R)=(T^3K)/Y | | 2/5x=14/35x | | -8x+4=13x-16 | | 4x=20x180 | | x-(x*0.95)=1500 | | x-0.025x=1500 | | 5=2.5(p+10) | | 0=9.8t+18 | | (3x+8)+(2x+2)+80+90+x=360 | | 10/6=6/b | | 90=130-x | | 5^x-3+3=11 | | 4p+8=170 | | n+9.4+8.4=20.9 | | -3x+3=-7x+1 | | 2x/11+6x-7=180 | | 6x+7=3x-+19 | | 3x-10-2x-10=0 | | 5x+x+3x+45=360 | | 2x+1/2=5/2 | | 3x+2+2x+3=18 | | -20+4x-80=0 | | y=12.000(1+0.06)^4 | | 7x-15=-6 | | 1/2x(G-11)(G-8)=35 | | 12n=-36+3n | | 1/5p+3=-17 | | 9w-4=5w+8 | | (5x2)(x1)=0 | | 4z-3(z-2)=-8+5z+2 | | (4x+8)(x2)=4 | | n/4+15=29 |